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LETTER TO THE EDITOR 

SO(4) group generators for bordered atomic systems 

A C Kalloniatist 
Department of Physics, University of Tasmania, GPO Box 252C, Hobart, Tasmania 7001, 
Australia 

Received 31 March 1988 

Abstract. For atoms whose valence states obey k = n + I  ordering, we assume a Hamiltonian 
H = H‘k’+  H “ ) ,  where the first term has invariance group SO(4) and is perturbed by the 
second. We derive matrix representations of operators which, with angular momentum, 
are constants of the motion and generate such an SO(4) group. 

Sternheimer (1977a, b, 1979a, b) has demonstrated the usefulness of the Madelung 
(1936) quantum number k = n + 1 ( n  is the principal quantum number and I the orbital 
angular momentum quantum number) in describing the ordering of excitation energy 
states of the s or p valence electron in 42 atomic spectra including the neutral alkali 
metals Na, K, Rb and Cs (Li obeys ‘hydrogenic’ ordering, i.e. according to the quantum 
number n), the singly-ionised alkaline earths Mg 11, Ca 1 1 ,  Sr 11, Ba I I  and Ra 1 1 ,  as well 
as Ca, Zn, Ga, Ge 1 1 ,  Sr, In, In 11, Sn 11 ,  T1 and Pb 11. The features of the spectra are 
that, after averaging over j values, one observes in the spectra (i)  sets of levels where 
neighbouring k values do not overlap provided 1 is below some critical value, and the 
ionicity of the atom is not too large and (ii) within each k ‘supershell’ the ordering of 
energies is in accordance with a distinctive sequence of 1 values, the sequence remaining 
more or less the same for all k bands throughout the individual atomic spectrum. 
There are also remarkable similarities between these ‘I patterns’ from element to 
element. 

In this letter we follow Sternheimer’s scheme in which there is an assumed initial 
Hamiltonian with energy levels ordered by k and states which are degenerate with 
respect to those energies. The degeneracy i s  then broken by an /-dependent perturbation 
in the Hamiltonian. By assuming an SO(4) invariance group of such k-dependent 
Hamiltonians, and angular momentum to be one of the constants of the motion, we 
shall derive matrix representations of an operator which is the additional constant of 
the motion for S0(4)-invariant quantum mechanical systems where the spectrum is k 
ordered. This operator is thus relevant to the specific atomic systems in question. 

The effective Hamiltonian can be written as the sum H ‘ k ’ + H ( ‘ ) .  The first term, 
which we call the ‘Madelung’ Hamiltonian, will have eigenvalues which are a function 
of k. The second term is the perturbation. We shall consider only the unperturbed 
Hamiltonian, denoted H = H(k) ,  which is effectively a ‘single-particle’ Hamiltonian$ 

t Present address: Department of Physics, University of Adelaide, South Australia, 5001, Australia. 
$Thus it is expressible in the form 

P2 
2P 

H =-+ U ( r i , p , ) .  

U describes the average potential in which the valence electron moves. 
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as we are dealing with the motion of the valence electron in the environment of the 
atomic core and nucleus of the atom. We shall assume the Madelung Hamiltonian 
acts on a ‘hydrogen-like’ representation space of states of the group S 0 ( 4 , 2 )  (Wybourne 
1974), the states labelled by the quantum numbers ( n ,  1, m) .  These are still acceptable 
quantum labels despite the k ordering as K = N + L, in the sense of operators, commutes 
with L, L3 and N. Nor is it inconsistent with the actual observed spectra to take SO(4) 
to be the underlying symmetry of the ‘privitive’ k levels because a priori it has seemed 
reasonable to classifiers of atomic spectra (splittings due to, for example, spin-orbital 
interactions aside) to use the hydrogenic labels n, 1 and m as ordering numbers for 
these more complex spectra. Moreover we may assume angular momentum conserva- 
tion (for a single electron in some potential this is not unreasonable); hence the 
Hamiltonian is SO(3) invariant. From the assumed SO(4) symmetry there is an 
additional conserved quantity in the problem, analogous to the Runge-Lenz vector in 
the Kepler problem (Goldstein 1980, Kaplan 1986). We shall call such quantities 
pseudo Runge-Lenz vectors (PRLV). 

We consider the following ladder operators of angular momentum which are found 
as terms in the components of the normalised Runge-Lenz vector (Biedenharn and 
Louck 1981): 

1 ( n + l +  l ) (n  - I -  1)(1+ m+ 1)(1+m+2)  ‘ I 2  
AT1 nlm) = -- 

2 
) I n l + l m + l )  

(21+ 1)(21+3) 

( 1 )  
t ( n +  I +  l ) (n  - l - l ) ( I - m +  1 ) (1 -m+2)  ‘ I 2  

I n l + l  m - 1 )  

( 
+-( 2 (21+1)(21+3) 1 

( 
+-( 2 (21+ 1)(21+3) ) 

( (21 + 1)(21+ 3) 1 

i ( n +  l+  l ) ( n  - I -  l ) ( l + m +  1)(1+ m + 2 )  ’’* All nlm) = - 
2 

) I n l + l m + l )  
(21+ 1)(21+3) 

(2) 

(3) 

(4) 

i ( n + l +  l ) ( n  - I - - l ) ( I - m + l ) ( I -  m + 2 )  ‘ I 2  I n l + l  m-1)  

( n + Z +  l ) (n  - I -  l ) (Z+m+ 1) ( I -m+ 1 )  ‘ I 2  
I n I + l  m )  A:( nlm) = 

A; = (A:)+. 
These are bona$de vector operators and can be more rigorously derived from the 
characteristic identities of SO(3) (Bracken and Green 1971). They specifically arise 
as a property of the group and are thus applicable independently of the specific 
quantum mechanical system in question (hydrogen or otherwise). From these we 
construct a class of PRLV which commute with Hamiltonians whose eigenvalues are k 
dependent: 

N ,  are ladder operators of n, and a and P are, at this stage, arbitrary functions of 
the operators N and L having eigenvalues n and I respectively on states labelled by 
(n, 1, m).  These functions distinguish between the specific members of the class. Most 
significantly, by its generality, the class will include the physical PRLV for k-ordered 
atomic systems. Taking the conventional n-laddering operators of S0(4 ,2 ) ,  the hydro- 
gen dynamical group (Wybourne 1974), and requiring the PRLV to be Hermitian, gives 
a relationship between the two functions 

A”‘= a ( ~ ,  L ) N + A - + P ( N ,  L)N-A+.  ( 5 )  

( n  + I )  
[( n + 1 + 1)( n - I + 1)]’/2* 

P ( n ,  I )  = a ( n  + 1,  1 -  1 )  
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In terms of ladder operators of the azimuthal quantum number, m, we obtain by 
incorporating (1)-(4) and (6) into the definition ( 5 )  

A:lnlm)=- a ( n  + 1, I -  I ) ( ~ + I )  
i 
2 

n - I ) (  n - I + I ) (  I - m)( I - m - 1) 
(21 - 1)(21+ 1) 

I n + l  I-1 m + l )  

( n  - I - I)( n - I - 2)( I + m + I ) (  I + m + 2) 
(2I+ 1)(21+3) 

i 
2 

+-a(n ,  l ) ( n + l )  

x l n - l I + l  m+1)  (7) 

( n  - I ) ( n  - I + l ) ( l + m ) ( l + m  - 1) 
(21- 1)(21+ 1) 

I n + l  I -1  m-1) 

i 
2 (21+1)(21+3) 

n - I -  1)(n - I - ~ ) ( I -  m + 1)(1- m $2) 
-- a(n,  I ) ( n  + I )  (( 

( n  - I ) ( n  - I +  1)(1+ m ) ( l -  m )  

n - I - l ) ( n - 1 - 2 ) ( 1 + m + l ) ( 1 - m ~ 1 )  

I n + l  I-1 m) 
i 
2 ( (21 - 1)(21+ 1) 

A;Inlm>=- a ( n +  I ,  I -  l ) ( n + ~ )  

+-a(n ,  I ) ( n + I )  
(21+1)(21+3) 

i 
2 

where 

- 1  - 1  
2i A; = z  (A:+AI_) A; =- (A: -A[). 

These can be shown to obey the commutation relations 
I 

[ L i ,  A,!] = kijkA; 

[Ai,A,!]=i&ijkHLk 

where L is the usual angular momentum operator and the scalar operator H has 
eigenstates I nlm) with eigenvalues 

( n i - I ) 2  
4(21+ 1) 

which we denote by h,,. In the final analysis (13) must be a function of k only. This 
quantity is interpreted as the eigenvalue of the desired energy operator. Equation (12) 
is not yet the correct SO(4) commutation relation, H having to be removed by suitable 
normalisation of the PRLV. We first impose the further constraint that the SO(4) Casimir 
invariants (Wybourne 1974) L - i  and L 2 + i 2 ,  where A' is the normalised PRLV, must 

[ a 2 ( n ,  I ) ( n  - 1 - l ) ( n  - 1-2) - a2(n + 1, I -  l ) (n  - 1+ l ) (n  - 111 (13) 
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also be k dependent. Thus the components of L and A” are infinitesmal generators of 
the SO(4) group. The first Casimir is simply zero and the second has eigenvalues 

where 

(15) xn, = a 2( n, I ) (  n - 1 - 1)( n - 1 - 2). 

To make the k dependence explicit denote (14) by the function C ( k )  and let 

@(k) h,, =- l( k, I )  = [ C (  k )  - ( 1  - I)(  I + 
( n  + 1)’ 

4 

Thus the most general form of the arbitrary function a is given in terms of the energy 
function and the eigenvalues of the Casimir 

( C(k)- I ( I+2)  
a (n,  I )  = @’/’( k )  

( n  - I - 1)( n - I - 2) 

Substituting expressions (16) into (7)-(9) and dividing through by the square root of 
h,, gives for the correct matrix representations of the additional SO(4) generators: 

m)(Z- m - 1) 
InS11-1  m+1) 

In-1 1+1 m + l )  

(21- 1)(21+ 1) 

( 1  + m + 1)(1+ m +2) 
(21+1)(21+3) 

A+Inlm) = i l (k,  I )  

+ir(k’  

( ( I  + m)( I +  m - I)) ‘ I 2  L i n l m )  = - i l (k,  Z) I n + l [ - l  m-1) (21- 1)(21+ 1) 

m + I)(  I - m + 2) 
(n -1  I f 1  m-1) (21+ 1)(21+3) 

jn-1 I + 1  m). (21+ 1)(21+3) 

We derive the eigenvalues of the Casimir by complete analogy with hydrogenic atoms. 
We form generators of the Lie algebra of the group SU(2) x SU(2), locally isomorphic 
to SO(4) (Wybourne 1974), by 

j = ; (L+ A) 3 = +(L - A”) (21) 
the components satisfying 

[ J ,  41 = iq,& [S:, $1 = i E r J k &  [ j , ,  $1 = 0. (22) 
The Casimir operators of SO(4) may be written in terms of those of SU(2) (which are 
j 2  and j r 2  having eigenvalues F(f+ 1) and f’(F+ 1) respectively where f’ = 

(23) 

0, f, 1, * . .): 
F = j 2 +  3 1 2  = +(L2+ p) 
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We have already seen that G is zero; thus s2=jt2 or J=?, so that F ( = C ( k ) )  has 
eigenvalues 2J( J+ 1) .  Whereas for ordinary hydrogenic ordering (according to n )  we 
have the relationship n = 2j+  1, in this case ( k  ordering) we have separate relationships 
between k and J depending upon whether k is odd or even. This is illustrated in figure 
1 where the S 0 ( 4 , 2 )  space of states breaks up into two copies of SU(2) x SU(2) 
representation spaces corresponding to k being odd and even. For k an even number 
we obtain 

J =  f ( i k  - 1) ( 2 5 )  
and for odd values of k 

J = i[f( k + 1) - 13. 

Therefore 

C ( k ) = i ( i k - l ) ( i k + l )  k even 

C( k) =;( k - 1)( k+ 3)  k odd. 

Inserting (27) and (28) into equations (18)-(20) provides, with angular momentum, a 
unique set of generators of the Lie algebra of the group SO(4) which commute with 
a Hamiltonian whose eigenvalues are k dependent. 

The additional knowledge of the functional form of the energy eigenvalues (e.g., 
via the spectra themselves) will result in an operator which is the constant of the 

1 

Figure 1. S0(4 ,2)  Hilbert space of states arranged in a tower showing breakdown into 
two SU(2) x SU(2) representation spaces corresponding to states with k ( = n  + 1 )  odd (0) 
and even (+). The broken and unbroken lines indicate alternate SO(4) representations 
corresponding to (degenerate) states with the same value of k. The SU(2) labels, j ,  apply 
for the odd and even 'lines' of k. We see that for j = 0, k is either 1 or 2, j = f corresponds 
to k = 3 or 4, j = 1 with k = 5 or 6, j = with k = 7 or 8, etc. Thus we derive relations (25) 
and (26). 
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motion for quantum mechanical systems whose spectra are observed to be ordered 
according to the quantum number k. As such we propose that such an operator is a 
viable candidate for the specific constant of the motion for complex atoms consisting 
of a valence electron surrounding a closed electronic core such as the neutral alkali 
metals, where the spectrum is observed to be k ordered. 

The author wishes to thank Dr P D Jarvis for suggesting the problem, and Dr J R Fox 
and Professor R Delbourgo for their invaluable assistance; also Dr A J Bracken (via 
PDJ) for comments. This work was done while at the University of Tasmania. 
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